
U.S. Department of Energy

Preprint
UCRL-JC-135877

Using Python to Develop
Graphical Interfaces to
Scientific Data

L. H. Macfarland and G. J. Streletz

This article was submitted to
8th International Python Conference
Alexandria, VA
January 24-27,200O

September 24,1999

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Using Python to Develop Graphical Interfaces to
Scientific Data

Lynn H. MacFarland and Gregory J. Streletz

Lawrence Livermore National Laboratory, University $ California,
P.O. Box SOS, Livermore, CA 94551 USA
macfarland2@llnl.gov, streletzl @llnl.gov

Abstract

At LLNL, Python has proven to be a
convenient language for the development of
graphical user interfaces (GUIs) which allow
scientists to view, plot, and analyze scientific
data. Two such applications are described in this
paper. The first, EOSView, is a browser
application for an equation of state data library at
LLNL. EOSView is used by scientists
throughout the laboratory who use simulation
codes that access the data library, or who need
equation of state data for other purposes.
EOSView provides graphical visualization
capabilities, as well as the capability to analyze
the data in many different ways. The second
application, Zimp, is a GUI that allows
interactive use of the Stark Line Shape Database.
It is used to access and plot data. The quick
construction of Zimp from elements of the
EOSView code provides a useful lesson in code
reuse, and illustrates how the object-oriented
nature of Python facilitates this goal. In general,
Python has proven to be an appropriate choice of
language for applications of this type for several
reasons, including the easy access to GUI
functionality provided by Tkinter, the ease with
which C functions can be called from Python,
and the convenient handling of strings in Python.
Moreover, the features of the Python language,
combined with the fact that it is interpreted
rather than compiled, have allowed for extremely
quick prototyping.

1. Introduction

Two different divisions wished to provide
tools that allow physicists and designers access

to scientific data without worrying about
computers. Both divisions agreed graphic user
interfaces (GUI) would be the answer. Motif was
chosen as it had an easy interface to C and
resided on all machines. The person
investigating alternative languages did not know
that Python could be installed on all machines
and that TkInter provided a GUI interface. This
project stalled and was later abandoned as
prototyping was difficult and development was
extremely slow.

A similar GUI, EOSView, was developed in
Python with TkInter. Prototyping was quick and
easy. The users liked becoming part of the
process and seeing a quick turn-around.

A basic Python Widget class was created.
Tailored modules were built using this basic
class and TkInter. Each window became its own
module. In future designs, there may be a basic
window module from which the specialized
windows will be built. Subsequently, the Python
Widget class was reused for another GUI, Zimp,
and is available for future work.

Each GUI extends Python with C routines.
One Python/C interface is created for each
window module. In this way, the GUI accesses
the various C functions or libraries. This ensures
that the same functions are called from Python as
from other C or C++ programs. Verification and
Validation (V & V) are major concerns to both
groups.

2. Why Python
The chief concerns in selecting a GUI

language were portability, stability and the
ability to embed C. LEOS resides on the Cray
J90, DEC Alpha, Meiko CS2 and IBM SP2
machines. Originally, Python only had been
installed on the DEC machines. Documentation
and examples were also important.

TCL/TK interface to C was considered
moderate difficulty and there were only two
books. Java and Python were reportedly only on
the DEC machines. Java was considered too
unstable. This assessment said that Python had
no GUI and a moderately difficult interface to C.
The assessment did not mention TkInter.
Graphics libraries considered were Gist, NCAR,
Diglib, Java, IDL and Xl 1. Java and IDL were
not available on all machines. Motif was chosen
as it resided on all the machines, has an easy
interface to C and there was plenty of
documentation. However, Motif is difficult to
learn. It requires lots of coding before a
prototype can be seen. GUI tools, such as UIMX,
were not available.

With a background in Motif/Xl 1 and TcYTk
background, we chose Python with TkInter.
Python is designed to work with small programs
at the prompt similar to Tcl/Tk. Python
programming is much more flexible than Tel and
far superior in accessing C routines. In addition,
Python has classes similar to C++. GUIs are
inheritantly object-oriented. Future GUI work
will extend Python using C-t-+. Thus, the class
structure of Python was attractive plus there was
a knowledge base of Python developers.

Developing in an interpreted language is
much faster and easier than Motif. From the
requirements document we could show different
storyboard scenarios. To show the users we
created a widget or set of widgets and let them
pick the look and feel. This technique certainly
helps the end-user “buy into” the tool.

Python has direct manipulation, better than
Java. The stability of the Java environment was
strongly questioned.

Python was chosen for its ease of
prototyping with the Tk by using TkInter. Python
is object-oriented, which is inherent in the GUI
schemes. Python can extend C++/C or be
embedded into these languages. Python is an
excellent way to stick things together. Plus
Python is just plain fun!

3. EOSView

3.1. Overview
EOSView [l] is a Python-language browser

application for a large equation of state data
library at Lawrence Livermore National
Laboratory. The data library, called LEOS
(“Livermore Equation of State”) provides
equation of state (EOS) data for use by several
large, mission-critical simulation codes at the

laboratory. Due to the importance of obtaining
accurate results with these codes, it is essential
that the scientists who use them be able’to verify
the accuracy and appropriateness of the EOS
data being passed to them. EOSView has been
developed to serve this purpose, and has been
quickly prototyped in Python. EOSView allows
code users to view and analyze LEOS equation
of state data through use of a convenient
graphical user interface (GUI), and is expected to
be a valuable verification and validation tool.

3.2. Background
The LEOS equation of state data library [2]

provides tabular EOS data for almost 150
materials. For most materials, data is available
I’or 18 different functions (see Table 1). In
general, each function depends on the
independent variables of density and
temperature. There are a few functions that
depend on density only.

TABLE 1. The Functions Currently Available in the

The LEOS data library is located in a single
binary file. The file format is defined by the
PDBLib file management routines [3], and has
an internal hierarchical structure. In general, the
first level of the hierarchy consists of the set of
materials available in the library. Once a
material is selected, the next level of the
hierarchy consists of the set of functions
available for that material. Upon selection of a
particular function, the next level consists of the
various data for the table corresponding to the
selected material and function. The most
significant data are the list of density values, the

list of temperature values, and the list of function
values. In addition to this general scheme, other
data (material information, for example) are
available at the various levels of the hierarchy.

There is a textual browser available for
examining the contents of PDB files. This
utility, called PDBView [4], allows the user to
traverse the levels of the hierarchical data library
by using UNIX style commands. Fig. 1 shows
the use of PDBView with the LEOS data library.

While PDBView is extremely useful for the
direct viewing of the contents of the LEOS data
library, there are several reasons why a GUI
based browser application was needed to replace
it. First of all, a GUI is much easier to use,
because it does not require the user to learn the
set of commands accepted at a command prompt.
Secondly, a general scheme for graphical
visualization is lacking. Also, PDBView does
not allow the user to compare the table data with
experimental data points, and does not provide
the functionality to analyze the data in various
ways. Finally, PDBView does not access the
interpolation algorithms that are encapsulated in
the LEOS access routines used by an application
code. This is a critical shortcoming from a
verification and validation perspective, because
it is desirable to assess the quality of the data that
are actually being used by a code, not just the
data that reside in the library itself.

:::
:::

FIGURE 1. Using PDBView to navigate the
hierarchical structure of the LEOS data library.

3.3. The EOSView GUI
The EOSView browser provides a graphical

user interface that allows scientists to access the
functionality of the browser quickly and easily.
The GUI widgets are provided by the Tk widget
set, and are accessed through Python by using
the TkInter package [5]. Fig. 2 shows the
EOSView main window.

FIGURE 2. The EOSView main window. The Motif
look and feel are provided by the Tk widget set, which
is accessed by Python through the TkInter interface.

The structure of the EOSView GUI is based
on a parent-child paradigm, as illustrated in Fig.
3. In general, after selecting the materials and
functions of interest in the EOSView main
window, a user can select one or more analysis
options from the menu bar. Usually, this results
in the creation of an appropriate analysis
window. The analysis window accepts inputs for
the various parameters necessary for the
particular analysis to be performed. All analysis
windows are children of the main window, in the
sense that when the main window is closed, all
the analysis windows disappear as well. From a
given analysis window, a user can select the
desired parameters for the analysis, and then
initiate the computation at the touch of a button.

The resulting data are displayed in a data
window. A data window can be either a text
window or a plot window, as appropriate.
Again, the parent-child relationship is preserved.
If an analysis window is closed, either directly or
because its parent (the main window) was
closed, all of the data windows that have been
created using that particular analysis window
will be closed as well. Howevei, any data
windows created using other analysis windows
will remain displayed until those windows are
closed. Data windows also can be closed
individually.
There is one more level to the parent-child
hierarchy: a text window can be created from
any given plot window in order to display the
data of that plot in tabular form. If the plot

window is closed for any reason, the text
window is closed as well. It should be noted that
it is possible for data windows to be children of
the main window. This occurs when there are no

parameters to be selected, making an analysis
window unnecessary. An example is the
displaying of table data for a single material and
function.

Main Window

Analysis Windows

EOSView
Main

Window

Isotherms

Data Windows
(First Level)

Data Windows Text

(Second Level) Window
Text

Window

FIGURE 3. The parent-child structure of the EOSView GUI.

Python makes it easy to implement the
parent-child model of a multiple-window GUI.
First of all, Python’s object-oriented nature can
provide, almost automatically, the correct
behavior upon the closing of a given window.
By implementing the analysis windows and data
windows as Python classes (as opposed to
functions), each open toplevel window in
EOSView is an instance of some class.
Moreover, because the class instance for each
toplevel window was instantiated from within
the code of its parent (itself the instance of some
class), the destruction of the parent results in the
destruction of the child. The parent-child model
described above is the result.

As mentioned previously, there are some
cases in which the parent-child model of
EOSView requires that a data window be the
child of the main window, rather than of an
analysis window. This occurs when the only
parameters necessary for the execution of the
desired task can be selected from the main
EOSView window. For example, if only one
material and one function have been selected at
the main window and the user wants to view the

table data, no other input is required, so the
requested data should be displayed immediately,
without the intervention of an analysis window.

In the Python implementation, this effect is
achieved by some minor cheating. Data
windows are always instantiated from analysis
windows. However, if no additional information
is required in order to obtain or calculate the
desired data, the analysis window “hides” itself
using code such as the following:

If only one material and function,
do not show the GUI window.
if (noGU1 == TRUE):

self.withdraw()

Moreover, after performing the necessary
initialization code, the analysis window bypasses
waiting for user input by immediately running
the Apply0 method, which obtains and displays
the desired data:

u! paIaluno3ua uo!~enl~s Mopu!M-afdppIuI leD!drCl
l? SMOqS p '%!d Xoql/cd II! /C~!sea paluawalduq
uaaq seq ‘lapour pl!qD-luamd B ‘SMOPU!M
ald!)Intu BU@XIWI 01 uoyqos aq~ *SMO~U!M
30 JaquInu 6Ji?i1!q.K? UB uMeds UI?D $~ql Inr>
e ~03 paau aqi yy~ pap 01 Lwa Lp!v3 11 apew
aAeq ‘yoMaurey 00 ue put2 sisg alqwnu 30
I(lyqel!eAr2 aql se qDns ‘a%nZfuv~ uoq&j aql30
samwa;l luayAuo2 Iwam ‘hwuwnsu~

[] = ~S~~MOpU~M-LJ~aS
()~Ol~Sap-[~]ZjS?~MO~U~M-3~aS

:((qSyTMOpUrM-ZJIaS)
ua~)aduFl UT r 103

SMOPTM 2oTd aso-C3 #
:(3~EE)SMOpU?MaSO~3 3F@

:MOPU!M s~s@zue sw.wqlosI -reln~!ved
seql Zu!sn pawar uaaq 'peq leql SMOPU!M
loId ale 30 %u!so13 aql II! 1lnsa.I pInoN qzqM
‘ape:, Bu!~olIo3 aql 30 uo!lnDaxa aql u! ynsaJ
pInoM ~opu!~ sysLpXn2 suuaqlos1 aql uo uollnq
,,SMO~U!M loId asol& aql Bu!ssald ‘ask? s!ql LII

sawoDaq saI MOPUIM 30 ycw11 %!daay ‘srsq
uoqllcd palwojlv Rlp+u~"ukp ‘aIqe1nur Bysn
'IlaM se Lsaa sfql sayem uoqlXd ‘L~awnv~o~
-uoga3ydde aql %ug!xa lnoql!M MOPUIM
Ma!A\S@J U!"" aql lUO.l3 SMOpU!M \?lEp pUE?
s!dleu~ uado llr? aso13 01 osie pus ‘3lasi! MOPUIM
S!S@?UE aq, %l!SO1:, lVlOl/l?M ‘MOpU!M S!S@W?
uaA$ E %u!sn paleal alaM leql s~opu!~ wep aql
30 jp? as013 01 s.Iasn SMOI[E Ma!ASO'I: ‘aIdu.wxa
JOd 'suowal Jaqlo ~03 Los op 01 alqeqsap
3q [[!lS hIJ l! ‘X3AaMOH 'SMO~U!M IaAa[dol
uado 01 puodsalro:, leql sa3ue)suf sse~~ aql30 11~
30 y~e.11 daay 01 K.wssa3auun 11 sayt?ur uoq&j 30
slDadse palua!lo-pafqo aql 30 a8urweApe &ye1
‘lapour ppqwua.wd aql qj!M ~~a~s~suo~ Jauuem
I? u! SMOPU!M 8u~so~~ 30 asodJnd aql IO+J

mp aql S! MopU& Mall\SOB yu aqi leql

amvmaddv aql uaA@ aAeq aM ‘1aAaMoI.j jauo
alq!S!AU! UB J!aq[E?) MOpUIM S+@i?UI? III? JO pI!qD
aql s! Q23!uq3al ~opu!M wp aql 'paulaDuo
s! ape:, uoq& aql se 1123 se ‘alo3alaqL

FIGURE 4. The fact that EOSView is a multiple-window GUI makes it convenient to establish parent-child
relationships between GUI windows. In this screenshot, the “Get Table Ranges” and “View Table Data” windows are
children of the main EOSView window. Both have a data window as a child. In addition, there is an open “Material
Information” window. This data window is a child of the main window because getting material information for a
single material was a task that did not require the input of additional parameters, and thus did not require an analysis
window. Python makes it easy to enforce these parent-child relationships.

3.4. Calling C from Python: a to quickly verify that the access routines give the
V&V necessity expected data.

The entire GUI could have been written in
Python. However, the Shock and High Pressure
Physics group wished to test and validate the
database and access function results before
making public to the general user community. In
order to run the same access library, the GUI
must call the same functions. Extending Python
with C makes this possible.

Before calling the C functions, Python
ensures that the incoming data is valid.
EOSView does not allow data that is out of
range to be tested or interpolated. It verifies that
the length of arrays is consistent and correct.
Thus, EOSView is not a true black box test. It
does not test the error handling of the C routines
in the cases of bad data. EOSView is a great tool

3.5. Handling Multiple Data Files
with Python

Explicitly keeping track of open windows
could be useful for managing the temporary data
files EOSView writes to the file system.
Currently, EOSView creates a temporary
directory in which to write all of the data files
computed during the given session.

When the application exits, this entire
directory is removed. However, by keeping
track of the window IDS of the open windows
and using an appropriate scheme to name the
temporary data files, all data files linked to a
given analysis.

4. “Glue Language”
Python is far superior to many compiled

languages, such as C/C++, in its ability to parse
and manipulate strings. Python handles all file
manipulation. The GUI allows wild cards or
exact name matches.

EOSView uses Python to alphabetize the
material names or to order them numerically. In
addition, the user may search for a material using
either its name or equation-of-state identification
number.

Python verifies the validity of user-entered
data. If an error occurs, the user is notified
immediately by a pop-up message box so the
data may be corrected. Python can accumulate
data and then send the arguments to the correct
routines. It sets up the C queries ensuring that the
C routines receive valid data.

with the database. The focus is the electron
density (Ne) by the electron temperature (Te).
Like EOSView Zimp needs to open files to read
data. Both allow users to enter data. Both have
ranges which need to be checked. Both have
units. Both use an option menu to make choices.

Zimp’s base set of widgets is the same as
EOSView. Code reuse makes development
quicker, and now there is a more consistent
interface among various tools.

Both Zimp and EOSView use the TVariable
module written by Nils Fischbeck. This module
extends Tkinter.Variable, Tkinter.StringVar, etc.
by methods trace-read, trace-write to trace read
and write variables. The option list depends on
TVariable to indicate when the user changes an
option. A callback is associated with the
TVariable so the proper action occurs when the
option label changes. Thus, when the user selects

5. Code Reuse
A basic widget class was created for

EOSView. This class allows a standard set-up
for composite widgets. There are standard
windows to select or save a file. This base class
organizes a composite of like in a given format
(horizontal or vertical). Some composites
include restrictions. For instance, this class
ensures that if there is a File pull-down that it is
the left-most pull-down menu and will be
attached to the left. Likewise if there is a help
menu, it will be the right-most pull-down menu
and be attached to the right. The bottom bar with
push buttons will have an Exit button in the
right-most corner. The formats comply with the
OSF/Motif Style Guide.

The basic widget class allows quick
construction of examples in an interactive mode.
This proved to be very useful when discussing
the design with the users.

Zimp, a GUI that accesses the Stark Line
Shape Database, was designed and developed in
a few days. Zimp compares experimental data

The user changes units of lambda from
Angstrom to eV. Not only does the range change
accordingly, but also the label changes from
lambda to Energy as both eV and keV are units

6. Extending Python
Following the Extending and Embedding the

Python Interpreter guide was straightforward.
This allowed the GUI to access existing C
functions and libraries. This is similar to code
reuse.

EOSView became a V & V tool by calling
the access routines that extract the information
from the database. The data still can be viewed
in text format. In addition, the data can be plotted
using Gnuplot. In this way known data can be
verified and visualized.

Sometimes extending Python with C helps
speed. EOSView called interpolation functions
written in C. Performance improved. Also these
functions could later be used by straight C code.

Both EOSView and Zimp use Gnuplot to
statically plot the data points. Other plotting
tools are being investigated. EOSView is
considering BLT. Zimp will continue to use
Gnuplot.

Future GUIs need to integrate a plotting
package. These plots are in two or three
dimensions. Both line and contour plots are

required. The ability to zoom in a particular
section of the plot and re-plot it with the same
number of interpolation points would be
desirable. In addition, the ability to overlay two
graphs is desirable. For instance, one plot
contains the library data and the other contains
the results of a simulation. Pgplot or one of its
variants and Gist are being considered.

7. Conclusions
Python with TkInter is an excellent way to

develop GUIs. Building a basic widget class for
composites helped in code reuse and a consistent
interface among tools.

EOSView and Zimp allow the user easy
access to the C libraries which access the
databases. However, in both cases the user does
not need to know how to program in order to use
the tool. EOSView is able to also function as a
verification and validation tool as it uses the
same functions and libraries as other C code.

EOSView does need a better plotting
mechanism. Future development requires it.
Recently, Python can access more plotting
packages instead of executing a package as if it
were a standalone program. Progress needs to
continue in this area.

8. Acknowledgements
We thank David Young, Ellen Corey, and

Jeff Nash for many useful discussions. This
work was performed under the auspices of the
U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract
number W-7405-ENG-48.

9. References

1. Streletz, G.J. and MacFarland, L.H., “A
New Browser for the Visualization of
Equation of State Data,” in Shock
Compression of Condensed Matter - 1999,
edited by M. D. Furnish. Not yet published.

2. Corey, E. M. and Young, D. A., “A New
Prototype Equation of State Data Library,”
in Shock Compression of Condensed Matter
- 1997, edited by S. C. Schmidt, et al., AIP
Conference Proceedings 429, New York,
1998, pp. 43-46.

3. Brown, S. A., et al., PDBLib User’s Manual,
LLNL Document M-270 Rev. 3, 1995.

4. Brown, S. A., et al., PDBView User’s
Manual, LLNL Document UCRL-MA-
108968 Rev. 1, 1994.

5 . Lundh, Fredrik. An Introduction to TkInter.
http://www.pythonware.com/library/tkinter/i
ntroductionJindex.htm

6. Open Software Foundation. OSF/Motif
Style Guide Revision 1.1, PTR Prentice
Hall, 1991.

7. Fischbeck, Nils. Communique to the
comp.lang.python.newsgroup.

8 _ van Rossum, Guido. Extending and
Embedding the Python Interpreter.
http:lfwww.python.orgldoclcurrent/ext

